
SIMILARITY PROBLEMS OF THE DYNAMIC AXISYMMETRIC BENDING 

OF NONLINEARLY ELASTIC PLATES 

V. P. Yastrebov UDC 539.3:534.1 

A large number of studies have been devoted to problems concerning the deformation 
of nonlinearly elastic bodies. The mathematical complexity of the topics studied in these 
investigations accounts for the wide use of approximate methods of solution or of numerical 
techniques employing a computer. Similarity solutions occupy a special place in a number of 
these problems. Such solutions can be obtained if certain assumptions are made in the ini- 
tial conditions of the problem. However, the subsequent steps to obtaining the solution re- 
quire that the corresponding operations be performed with a high degree of accuracy. It is 
sometimes possible to obtain a solution in quadratures or in the general case to reduce the 
problem to the integration of ordinary differential equations. Algorithms for solving the 
latter on a computer are well-established. From this vantage point, similarity solutions 
can be considered exact. 

Here, we examine the axisymmetric bending of a nonlinearly elastic plate subjected to 
an unsteady dynamic load. We use a power law to describe the relation between the stresses 
and strains. 

i. We direct the z axis along the symmetry axis perpendicular to the middle plane of 
the undeformed plate. The position of any point can be determined by the cylindrical coordi- 
nates r, e, and z. Here, r is the length of the position vector located in the middle plane 
of the undeformed plate and having its origin on the symmetry axis; ~ is the angle determin- 
ing the direction of the vector; z is the distance of the point above the end of the posi- 
tion vector. In the case of axisymmetric deformation, the bending elements are independent 

of the angle e. 

We will use o I and 02 to denote the normal stresses acting over annular and radial sec- 
tions of the plate. The third stress component acts along a normal to sections parallel to 
the middle surface. This component is commensurate with the pressure from the transverse 
load and is not considered in the analysis of the stress state. Some of the shear stresses 
in the radial and annular sections are equal to zero, by virtue of the symmetry of the 
strains. The effect of shear stresses, caused by tangential forces, on the deformation of 
the plate will also be ignored. 

The stresses in an elastic isotropic body are represented as the sum of the components 
of the tensors of the mean stress and stress deviator [1-3]. The first tensor depends on 
the spherical strain tensor, while the second depends on the deviator of the strain tensor. 
The relationship between the stresses and strains which follows from this connection can be 
written as follows for the case being examined: 

~ i - -  ~ = 2G(e~-- ~) (/ = l ,  2); ( 1 . 1 )  

= 3Ks.  (1.2) 

Here, o is the mean stress: o = (01 + 02)/3; s is the mean extension: ~ = (~i + e2 + g~)/3; 
gl, s2, s3 are the extensions in the direction of the normals to the annular and radial sec- 
tions and the middle surface of the plate; K is the generalized tensile bulk modulus, depen- 
dent on s; G is the generalized shear modulus, dependent on the strain intensity e,: G = 
o,/(3g,)i o, is the stress intensity: 

9 2 . ~ ~1/2 
~ ,  = ( ~ 1  + 02 - - 0 1 ~ 2 7  , 

~, = ( / ~ / 3 )  I ( ~  o o _ ( 1 . 3 )  - ~ ) -  + ( ~  - ~ ) ~  + ( ~  ~)~]~/~ .  
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We will assume that a power relationship exists between the stress intensity and strain 
intensity 

P,--I g ,  = E ~ ,  or G = (E/3) ~, ( 1 . 4 )  

(E and ~ are an assigned constant and exponent). We rewrite Eqs. (i.i) after substituting 
(1.2) into them: 

o j - -  ~[1 - -  2G/(3K)]= 2Gs~ (] = t ,  2). ( 1 . 5 )  

In a similarity solution, the stresses and strains must have the following structure" o~ = �9 j 

tx~(q), e~ = tYei(4) (j = i, 2), where t is time; ~j(q), e~(q) are functions of the dimen- 
sionless variable~q: N = r/(bt$), b is a dimensional constant; x, y, and ~ are exponents 
chosen during the course of the solution. When we insert these expressions into (1.5), we 
obtain equations linking the functions ~j(4) and ej(~). The time need not be present expli- 
citly in the equations, due to assignment of exponential relation (1.4) and variation of the 
values of x and y. However, it may be difficult to exclude the time from the combination 
G/K in (1.5), thus disturbing the similarity of the solution. The solution will for certain 
be similar if the problem is linear (G/K = const) or if the material is assumed to be incom- 
pressible (K + ~). 

We will study the last case. It follows from (i.i) that for an incompressible material 
(~ = o )  

a l~  4G(~1-I-0.5a2), as= 4G(a~ k 0.5~). (1.6) 

The h y p o t h e s i s  o f  s t r a i g h t  n o r m a l s  i s  u s e d  t o  e x a m i n e  b e n d i n g .  A p o s i t i v e  v a l u e  o f  d e f l e c -  
t i o n  w corresponds to deviation in the positive direction of the z axis. In the case of 
axisymmetric deformation, the extensions in the radial and annular directions are determined 
by the expressions [i] 

el = - -  z*• e2 = - -  z*• • = a2w/O r2, • = r-lOw~ or (1 .7)  

( z ,  i s  t h e  d i s t a n c e  f r o m  t h e  p o i n t  i n  q u e s t i o n  t o  t h e  m i d d l e  s u r f a c e  o f  t h e  p l a t e ;  K 1 and  K 2 
a r e  t h e  c u r v a t u r e s  o f  t h e  d e f o r m e d  s u r f a c e  o f  t h e  p l a t e  i n  t h e  r a d i a l  and  a n n u l a r  d i r e c -  
t i o n s ) .  We c a n  u s e  t h e  f i r s t  two f o r m u l a s  o f  ( 1 . 7 )  t o  e x p r e s s  ( 1 . 3 )  a n d  ( 1 . 4 )  t h r o u g h  Kz 
and  ~2 f o r  a n y  p o i n t  o f  t h e  p l a t e :  

~, = ( ~ t ~ / 3 )  '/~" I z ,  l, G = (l~l,B)(~t//3) <"-~),'~ I z ,  l~q 1 

(H = K1 2 + K2 2 + K l ~ 2 ) .  The s t r e s s e s  ( 1 . 6 )  a r e  a l s o  e x p r e s s e d  t h r o u g h  K1, K2 and  a r e  i n -  
h/2 

s e r t e d  i n t o  t h e  f o r m u l a s  f o r  t h e  b e n d i n g  moments  Mj = - .f o j z , d z ,  ( j  = 1, 2)  ( h  i s  t h e  t h i c k  

ness of the plate). We finally obtain -h/~ 

311= DH(~-1)/2(• 0.5• M 2 =  DH(~-I)/2(• 0.5• ( 1 . 8 )  

w h e r e  M 1 and  M 2 a r e  t h e  b e n d i n g  moments  p e r  u n i t  w i d t h  o f  t h e  a n n u l a r  and  r a d i a l  s e c t i o n s ;  

D = E h ~ + 2 3 - ( z + ~ ) / 2 ( p  + 2)  - z .  We u s e  t h e  known moments  ( 1 . 8 )  t o  f i n d  t h e  b e n d i n g  s t r e s s e s  

~j = - -  Mj  I z ,  [~ h-(~+~)21+~ (~ + 2) sgn z ,  (]. = 1, 2).  

We use the conditions of dynamic equilibrium of an element of the plate for axisymmet- 
ric bending to obtain 

aMJOr + ( M  1 -  M~)/r = Q, aQ/or -F Q/r = q - ma2w/ot~. (1.9) 
Here, Q is the shearing force per unit width of the annular section; q is the transverse 
load (assumed to be positive when acting in the direction of the z axis); m is the mass of 
a unit area of the plate. Equations (1.8-1.9), together with the last two equations of 
(1.7), solve the stated problem. 

We seek the similarity solution in the form [4, 5] 
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~' = u '* 'ht~ (~)' Q = Q*nctVx (~)' (1 .10)  

where w,, Q,, M,, b are dimensional constants; n i (i = i, 2, 3, 4), a, ~, ~, 6 are as-yet- 
unknown numerical coefficients and an exponent; ~(~), ~i($), ~(~), X(g) are sought dimen- 
sionless functions of the variable $. The load 

q = q,t ~(~) (1.11) 

[q,  i s  a d imens ional  c o n s t a n t ;  ~ i s  an ass igned  exponent;  f (~ )  i s  an a s s igned  d imens ion less  
function of $]. Using dimensional analysis, we express all of the dimensional constants 
through q,, m, and D: 

u,, = q,/m, b = (Dq~-'m-~)1/(2~+2), 

M ,  = (nqiUm-~) ~/(~+~), Q, = (Dq~+~m-~) I/(~+2). (1 .12)  

The variables of (i.i0) and (i.ii) are inserted into Eqs. (1.8) and (1.9) and the last two 
equations of (1.7). In this case, Eqs. (1.12) are taken into account. The time t appears 
explicitly during the substitutions. To exclude it, the exponent with t is equated to zero. 
This gives us the relations (~ - 2~)p - 6 = 0, ~ - ~ - g = 0, y - ~ - ~ + 2 = 0, ~ - ~+2= 0 
which we use to find the values of the exponents in (i.i0): 

a = ~ + 2 ,  ~ =  2( I+~)  , 7 2( I+~)  ' T ~ .  (1.13) 

We finally arrive at the system of equations 

r = n~' ( n 1 ~ )  ~ (~"  + 0,5~') ~-~L "-~, (1.14) 
r = n7 ~ (n~nff)~ (~' + 0.5~")~-~L "-~, 

,~(~n~)- '  [ ~  + (r - *~)/~] = x, 

(L ~ [ ( ~ , , ) 2 +  $~,~p,,+(~,)211/~, w i th  the primes denot ing d i f f e r e n t i a t i o n  w i t h  respect  to ~). 

2. Using the equations obtained above, we will examine the bending of an infinite 
plate subjected to a load applied in a certain region of the plate. It is known [6] that in 
the case of the action of a concentrated force, the bending moment and shearing force in the 
neighborhood of its application vanish. The reason for this is the imprecision of the engi- 
neering theory of bending, which does not consider local strains of the material under a 
force. The exact solutions of the theory of elasticity give infinitely large stresses only 
directly at the point of load application. The presence of these stresses also cannot al- 
ways be considered physically correct. Thus, the force is often replaced by a load distribu- 
ted over a small but finite area [6], which leads to a finite value for the stresses. This 
is also a natural approach to take in the solution of a dynamic problem involving the local 
action of a force on a plate. However, fixing the size of the area over which the load acts 
introduces an additional linear dimension, which disturbs the similarity of the problem. 
To maintain similitude, it is necessary to assume that q is a function of the variable 
(i.ii). In this case, the load is not fixed relative to the coordinates r of the plate but 
instead moves over its surface with time. We take the load in the form (i.ii), having sup- 

posed that 

I(~)= exp(--k~)" (2. i) 

By changing k, we can change the area covered by the main part of the load by a certain mo- 
ment of time. In this case, the load is more or less concentrated. The total force created 
by the load (i.ii), (2.1), 

S = S  . f q r d r d O = S * t  ~ ( S , = n q , ( n e b )  :k  -~, ~ = ( ~ +  t) 29/(9+ t)). (2 .2)  

We can a s s ign  the  load on the  p l a t e  by us ing  (2 .2)  i n s t e a d  of q ,  and m. The c o e f f i c i e n t s  of  
(1.13) are expressed through X (2.2): 
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a =  I q - s  I ) (2>)-L ~ = 0,5 + s  ? = - -0 .5  § ( 2 . 3 )  

-} X(31~ + t ) ( @ ) - ' ,  6 = ~. 

T h e s e  f o r m u l a s  show t h a t  a t  ~ ~ 0 t h e  moments  M~ and  M= do n o t  v a n i s h  a t  i n f i n i t y  (6 a 0 ) .  
The coefficient y may have a negative value, i.e., the shearing force O (i.i0) in the neigh- 
borhood of the symmetry axis of the plate may be very large at t + 0. This is due to the 
fact that at the initial moment of time (t § 0), the load distribution on the plate deter- 
mined by (i.ii) and (2.1) is in the nature of an impulse function [7] (m < 0). 

Let us examine the case when the total force does not change with time (% = 0). It 
follows from (2.3) and (2.2) that 

= I,  ~ = 0.5, ? = --0.5,  6 = 0, w = --1.  (2.4) 

The coefficient ~ drops out of Eqs. (2.4). This means that the exponents with t in (i.i0) 
will be identical, regardless of the elastic properties of the material. In particular, 
the bending moment at the center of the plate will remain unchanged (~ = 0). Inserting 
and ~ from (2.4) into (1.14), we choose n i (i = i, 2, 3, 4) such that the form of the equa- 

tions is simplified: n i = 4, n 2 = 2 ~/(B+I), na = 2 2B/(B+I) , n4 = 2 D/(B+I)- As a result, we 
find from (1.14) that 

/~1= ( ~ ' ' +  0.5~ ' )~-~L ~-1, ~2=  (~ '@ 0 . 5 ~ " ) ~ - ~ L g - 1 ,  
(2.5) 

~ + (,~ - ,=)/~ = ~, ~' + x/~ = / (~) - ~" + ~', 

where f($) is given by Eq. (2.1). The first two equations of (2.5) are rewritten in the 

form 

~ , , =  [(~,,)2+ T,, A + A2](l- ,) /~) _ 0,5A, (2.6) 
% =  ~ ( 2 A  + ~ " ) / ( 2 T " +  A) (A = ~'/$). 

L e t  us  e x a m i n e  t h e  b o u n d a r y  c o n d i t i o n s .  Due t o  t h e  s y m m e t r y  o f  t h e  b e n d i n g  r e l a t i v e  t o  
t h e  c e n t e r  o f  t h e  p l a t e ,  t h e  a n g l e  o f  r o t a t i o n  a t  r = 0 i s  e q u a l  t o  z e r o  and Q = 0 ,  w h i l e  
Ma = M:.  On t h e  b a s i s  o f  ( 1 . 1 0 )  we o b t a i n  

= 0: ~ ' ( 0 ) =  0, %(0)= 0, , 1 ( 0 ) =  42(0). ( 2 . 7 )  

For an infinite plate at ~ § ~, all of the bending elements tend toward zero. The initial 
conditions are zero conditions. Here, we must augment these conditions by expressions which 
develop the indeterminacy of the terms entering into (2.5) and (2.6) at $ + 0. It is obvi- 

ous that lim %/~ = %'(0), lim A = lim ~'/~ = ~"(0). Using these relations in the last equation of 

(2.5) and the first equation of (2.6), at ~ = 0, we find 

lim ~/~ = 057 (0), A (0) = [ 3-(~+~)/~2~ (0)[1/~ sgn ~1 (0). ( 2 . 8 )  
g~0 

Due t o  s y m m e t r y  c o n s i d e r a t i o n s ,  l im ( * 1 - - % ) / ~  = 0. 
~0  

The e q u a t i o n s  c a n  be i n t e g r a t e d  by t h e  me thod  o f  r e d u c t i o n  t o  a Cauchy  p r o b l e m .  To do 
this, along with the use of conditions (2.7), we need at ~ = 0 to assign ~i(0) in (2.8). We 
also need to assign ~(0). Then we integrate. The values of ~i(0) and ~(0) that are initial- 
ly adopted need to be corrected in accordance with the degree of nonclosure of the solution 
at $ § ~. We then repeat the process. Variation of the two quantities @I(0) and ~(0) leads 
to a large amount of calculation. However, for the investigated value k = 0, the system of 
equations does not explicitly contain the functions ~(~). This reduces the order of the sys- 
tem and makes it possible to use only one condition ~l(0) to perform the trial runs. After 
this is done, to find ~(~) it is sufficient to integrate d@d~ = ~'($) (here, the right side 
has already been found). This is a linear problem which requires a single run to find ~(0). 

Both integrations are actually combined in a single program and are performed at the 
same time. We used a subroutine based on the Runge-Kutta method for the integration. The 
program provided for automatic selection of the integration step and involved the solution 
of a system of equations in higher derivatives. Nevertheless, the first equation of (2.6) 
is not solved analytically in ~" with an arbitrary ~. In the course of the calculations, 
~" was determined from (2.6) by the method of successive approximations. As the first 
approximation, we took the value obtained from the previous step. The process of successive 
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approximation turned out to be convergent in all of the computations performed on the SM-4 
computer. Figure 1 shows graphs of the quantities characterizing the bending of the plate 
for D = i/3 and k = i. 

It is useful to compare the solution we obtained here with the solution for a linearly 
elastic plate (~ = i). The bending of linearly elastic plates subjected to dynamic loading 
by concentrated forces was studied in [8-10]. We will find the solution for the load (i.ii). 
A similarity solution can be found for a linearly elastic plate by assuming that the plate 
material is compressible. In this case, the realtion between the bending moments and cur- 
vatures has the form [ii] 

MI=D,(•215 M 2=D,(~2+~• 

where v is the Poisson's ratio; D, is the cylindrical stiffness of the linearly elastic 
plate; D, = E,hS/[12(l - v2)]; E, is the modulus of normal elasticity. It follows from 
these equalities that 

~ =  ~"+ v~'l~, ~ =  ~'!~ + v~". ( 2 . 9 )  

In  ( 1 . 1 2 )  we r e p l a c e d  D by D, f o r  ~ = 1. 

We will again examine the case in which the total force S (2.2) remains constant (~ = 
0). The solution reduces to integration of system (2.5), where the first two equations are 
replaced by (2.9). This system, written for ~ = 0, makes it possible to introduce the fol- 
lowing new variable in the linear case 

= ~', _ ~,/~. (2.10) 

We find from (2.9) and the last two equations of (2.5) that 

~i = m + (I + v)~'l~, ~2 = --r + (I + v)~", (2.1i) 

m "  + 3q~'/~ + ~~ I (~) .  ( 2 . 1 2 )  

Tak ing  ( 2 . 7 )  i n t o  a c c o u n t  and e v a l u a t i n g  t h e  i n d e t e r m i n a t e  fo rms  a t  $ + 0, we u s e  t h e  t h i r d  
and f o u r t h  e q u a t i o n s  o f  ( 2 . 1 1 )  t o  f i n d  ~ (0 )  = 0, ~ ' ( 0 )  = 0. A l s o ,  on t h e  b a s i s  o f  ( 2 . 1 2 ) ,  

lim ~ ' / ~  = ~ ' ' ( 0 ) =  0 . 2 5 f ( 0 ) .  These  c o n d i t i o n s  a r e  s u f f i c i e n t  f o r  t h e  i n t e g r a t i o n  o f  
~-~o 
( 2 . 1 2 ) .  The f u n c t i o n  ~ i s  i n d e p e n d e n t  o f  t h e  a p r i o r i  unknown b o u n d a r y  c o n d i t i o n s  ~0(0), 
~i(0) and is obtained by means of a single integration. To determine the other quantities, we 
integrate (2.10) with the found ~($) and we use Eqs. (2.11). The indeterminate form enter- 
ing into (2.10) is evaluated at ~ = 0 by means of the first expression of (2.11): 

lira ~'/~ = (i + v)-191 (0). (2.13) 
~0 

The values of ~i(0) and 9(0) should be assigned during the trial runs conducted to integrate 
(2.10). As in the nonlinear case, the calculations are made easier by the fact that (2.10) 
contains only derivatives of ~, Thus, it is sufficient to vary the one boundary condition 
~i(0). In determining the function ~ we finally refine the value of ~(0). Nearly all of the 
integration operations are performed simultaneously in the computing program. It follows 
from (2.12) that the function ~ is independent of v. It goes only into Eq. (2.13), which 
is used to integrate (2.10). This makes it possible, by means of a simple conversion, to 
find results for different v (with ~ = 0.3 and 0.5, the difference in the deflections and 
moments for ~ = 0 is about 7-11%). 

Figure 2 shows graphs of the quantities calculated for the linearly elastic plate with 
k = i. They show that in both the linear and nonlinear cases (see Fig. i), ~2 is greater in 
absolute value than ~l in the region of the plate adjacent to the symmetry axis (~ = 0) i.e., 
IM2] ~ IMiI in this part of the plate. While propagating, the wave associated with the 
bending moments and shearing force form a precursor which moves out in advance of the expan- 
sion of the region of significant plate deflections. 

Quantitative comparison of the quantities (I.I0) for the linear and nonlinear cases is 
made difficult by the fact that the coefficients (1.12) entering into these quantities will 
be different for materials with different elastic properties. Thus, the coefficients are 
reduced to another form. They are expressed through the quantities determined for a linear 

798 



0~02 

-0~02 

\.Z 

/ 
/ 

/ /  I 
4 

Fig. 1 

8 

% 

0~2 

-0~2 

O, i "',[ \ 

F,., Xivi-r .--., 
o / _ . ~ x ~ a . . . . 7 /  

/ !  ( ~'" 

-0,2 

#,3 

I/ 
- - - - - ~ T - -  - 0,3 

O' 2 # E 

Fig. 2 

O~ i 

"\ 

\ 

o 2 % 

Fig. 3 Fig. 4 

I .I 

i'/," 

U 2 4 ~'o 

plate and a certain parameter a, which is dependent on the ratio of the characteristics in 
the linear and nonlinear cases: 

b = (Dl/m)  1/~ a -1/2, M ,  = q ,  ( D J m )  1/2 a -1, Q,  = q,  (Ol /m)  1/~ a -1/2, 

w h e r e  a = D l Z / 2 D - 1 / ( P + Z ) ( q ~ 2 / m ) ( 1 - ~ ) / ( 2 p + 2 )  = ( E z / 3 ) z / 2 [ ( >  + 2 ) / E ] l / ( l + > ) ( q , 2 m  -1  x 

h-l)(z-P)/(2P+2); D l = E1h~/9; E I is the coefficient in Eq. (i.4) for the linear case p = 1 
[it differs somewhat from the elastic modulus E, determined with uniaxial tension: E I = 
3(2 + 2v)-ZE,]. In subsequently comparing the linear and nonlinear problems, the material 
is assumed to be imcompressible (v = 0.5). In order to compare the solutions, they must 
have been calculated for the same loads (i.ii), (2.1). Taking into account that the variable 

(i.i0) entering into (2.1) is connected with the elastic properties of the material, when 
we cacluate the nonlinear plate we need to take a value of the coefficient k which is 
(2(I-#)/(i+p) a )  times less than in the linear case. 

Figures 3 and 4 show graphs ~f w/(4tq...m -I) and Ml/(2 q, ~D1/m) characterizing the deflec- 
tion and bending moment with I = ~. The quantity 60 = r/(~tZD1/m) I/4 is plotted off the 
x-axis. Line 1 corresponds to the linear case calculated with k = 1 (2.1). Lines 2 and 3 
were constructed for a nonlinear plate at D = 1/3 for a = 0.707 and 2.83. These parameters 
correspond to the values k = 1 and 0.25. At these values, the load (2.1) remains equivalent 
for the linear and nonlinear plates. In the case of large a (line 3), the deflection is 
more localized near the symmetry axis and increases more rapidly than in the linear case. 
Here, the moment turns out to be smaller. The opposite pattern is seen for small a (line 2). 
It can be assumed that a characterizes the compliance of the plate and, in turn, depends on 
the ratio of E I and E. 

Figure 5 shows graphs (lines i) illustrating the dependence of (1.4) on E with fixed 
(D < i). Also shown is the straight line for a linearly elastic material at a certain E I. 

An increase in E is accompanied by a shifting of the curves upward, thereby increasing the 
range of strains for which the nonlinear material turns out to be stiffer than the linear 
material. This explains the results obtained from comparing the solutions. 

3. It is very interesting to study the bending of plates of limited size. However, 
the solution can be similar only in the special case when the exponent $ in g (i.i0) is 
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equal to zero. Then ~ will depend only on the space coordinate r, which makes it possible 
to satisfy boundary conditions assigned a finite distance from the center. We will refer to 
the corresponding solution as degenerate [12]. For this, from (1.13) with ~ = 0, ~ = 2/(1 - 
p), y = 6 = m = 2p/(l - p). Here, the value of p determines the value of ~, which in turn 
prescribes the character of change in the load over time (i.ii). For n i (i = i, 2, 3, 4) 
in (1.14), it is best to take values different from those taken previously: 

n~ = [ ~ ( ~ -  i ) ] - L  n~ = n~ = [ ~ ( ~  - t ) ] ~ / ( ~ + ~ L  n~ - [ ~ ( ~  - i ) ] ~ / < ~ + l > .  

In this case, the first three equations of (2.5) and Eq. (2.6) remain valid. Instead of the 
last equation we obtain 

%' + X/~ =.f(D-- ~. ( 3 . i )  
Q 

Jim x / ~  = x'(o) = 0 . 5 [ / ( 0 )  - 
The s e c o n d  c o n d i t i o n  ( 2 . 8 )  i s  k e p t ,  w h i l e  t h e  f i r s t  i s  r e p l a c e d  by ~0 

~(0)I .  The b o u n d a r y  c o n d i t i o n s  a t  t h e  c e n t e r  o f  t h e  p l a t e  ( 2 . 7 )  r e m a i n  as  b e f o r e .  

L e t  us  examine  t h e  a c t i o n  o f  a u n i f o r m l y  d i s t r i b u t e d  l o a d  on a p l a t e  s i m p l y  s u p p o r t e d  
a t  r = R by an a n n u l a r  s u p p o r t .  We have  $ = ~,:~(~,)  = 0, ~1(~.~) = 0, where  ~ ,  = R / ( n 2 b ) ,  
and i n  ( 3 . 1 )  f ( ~ )  = 1. I n  i n t e g r a t i n g ,  we u s e  Eqs.  ( 2 . 6 )  and ( 3 . 1 )  and t h e  t h i r d  e q u a t i o n  
o f  ( 2 . 5 ) .  The i n t e g r a t i o n  p r o c e s s  i s  s i m i l a r  t o  t h a t  d e s c r i b e d  in  P a r t  2. However ,  now we 
need  t o  s i m u l t a n e o u s l y  v a r y  two a p r i o r i  unknown c o n d i t i o n s  ~ (0 )  and ~ 1 ( 0 )  a t  ~ = 
0 in order to satisfy the boundary condition with ~ = ~,. Although this entails 
a large amount of calculation, simplifications can be made. Let the order of the quan- 
tities ~(0) and ~l(0) be known. We fix the value of one of them, say ~(0) , and we solve a 
series of Cauchy problems. Here, we change ~z(0) in each solution. In solving the series 
of problems, we determine the values of $i and $2 at which 9(~i) and ~i(~2) vanish. The 
goal of the process is to find the value of ~i(0) for which $i coincides with ~2. The value 
gl = ~2 can be regarded as the support coordinate of the plate $,, where the boundary condi- 
tions ~($,) = 0, ~i($,) = 0 are satisfied simultaneously. In the given procedure, the ~(0), 
sought quantity is $,, i.e., the radius of the plate R. Having taken another value of ~(0), 
we can calculate the strain of the plate for another support radius. A series of such cal- 
culations performed for p = 1/3 (~ = i) allowed us to construct (in Fig. 6) graphs of the 
dependences of ~(0), ~i(0), ~2($,) on $,. These dependences characterize the deflection and 
the bending moments Mz at the center of the plate and M 2 at its support as a function of the 
size of the plate. 
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Dynamically applied loads are balanced by elastic and inertial forces. Given small 
plate dimensions ($, < 2), elastic forces predominate. At $, + =, the plate resists only 
with inertial forces, and ~(0) § i. For short plates ($, < 3), the maximum values of M I 
and M 2 are seen at the center. Here, M 2 changes slightly (up to 10%) along the radial sec- 
tion to the value r = 0.6R. Only at the support does it turn out to be 40% less than at 
the center of the plate. With an increase in the radius of the plate, strains begin to be 
localized next to the supports. Thus, the maxima of M~ and M 2 are displaced from the 
plate's center toward the support. Figure 7 shows the distribution along the plate radius 
of quantities characterizing bending elements. Here ~, = 7.05. 
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MECHANICAL MODEL OF AN ELASTOPLASTIC BODY 

A. I. Chanyshev UDC 539.3 

It is presently held that the phenomenon of the plastic deformation of solids is based 
on the shear or slip of one part of the material over another [1-12]. Despite the agreement 
on the nature of plastic deformation, different approaches have been taken to describe the 
phenomenon. One school of thought is that plastic deformation is governed by a shearing 
process which takes place in a whole fan of slip planes [1-3]. Other investigators [4-12] 
believe that such a process occurs only in a finite system of slip planes with a particular 
orientation. In [4-8], this system was associated with the set of planes acted upon by the 
principle shear stresses. Another set was hypothesized to be composed of equally-inclined 
or octahedral planes [9, I0]. As regards macroscopic studies, they do not contradict any of 
the approaches taken [3, 5, 13, 14], but they do show that the last-mentioned methods have 
certain advantages: the beginning of plastic deformation is described best by the condition 
of constancy of the octahedral shear stress (or yon Mises condition) [12, 15]; during simple 
loading, the !'single" curve hypothesis, establishing the dependence of the octahedral shear 
strain on the octahedral shear stress [16-18], turns out to be valid. Microscopic studies 
undertaken to determine the planes of slip in a body being deformed also have failed to re- 
solve the problem of selecting an approach. This is because actual materials are to a known 
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